
FD-3DGS: Flexible Disentangled 3DGS for Scenes Understanding and
Manipulation

Shiyao Xu
Cybever

Junlin Han†

University of Oxford
Jie Yang
Cybever

a) scenes b) semantic c) object localization d) extracted 3D Gaussians

"Xbox controller"

" Pikachu"

" Joy-con 
controller"

"Plush Dolly Sheep"
"Teddy bear"

"apple"

" tea in a glass"
"spoon"

"coffee mug""plate"

" cookies on a plate"

"a brown paper 
cookie bag"

Figure 1. We present FD-3DGS, where we utilize the position attribute of 3D Gaussians to generate the corresponding semantic feature
flexibly. Our model can perform queries based on the learned semantic information, not only at the rendered views (c) but more importantly,
we can directly manipulate 3D Gaussian points (d) according to their semantic features (b).

Abstract

Understanding 3D scenes is crucial for various appli-
cations, but remains a challenging task. Existing methods,
even those using explicit 3D representations like 3D Gaus-
sian Splatting (3DGS), often fail to fully leverage the rich-
ness of these representations for comprehensive scene un-
derstanding and manipulation. We present a novel method,
FD-3DGS, that builds a “plug-and-play” semantic field
for 3DGS. This field leverages the inherent property of 3D
Gaussians, where nearby Gaussians share similar semantic
meanings. By employing a multi-resolution hash encoding
of Gaussian coordinates, we extract language information
from powerful models like CLIP and effectively integrate
it into the 3D scene. Through a carefully designed training
process involving improved feature rendering and enhanced
contrastive learning, FD-3DGS disentangles and refines se-
mantic information within the 3DGS representation. This
results in high-quality semantic features that enable more

accurate scene understanding and support direct querying
of individual 3D Gaussian points. Compared to existing ap-
proaches, FD-3DGS achieves higher accuracy in tasks like
language-based object extraction, demonstrating the effec-
tiveness of our method for 3D scene understanding.

1. Introduction
3D scene understanding is a classic task in vision and

graphics and has been widely used in autonomous driving,
human-object interaction, etc. Given a set of 3D represen-
tations or multi-view images of a scene, the goal of the task
is to learn the semantic information of the scene along with
the reconstruction process. Previous work [17,21,23,35,39]
has integrated semantic information from pretrained vision
foundation models such as CLIP [30] and DINO [5] into
Neural Radiance Fields (NeRF) [25] so that they can gen-
erate semantic maps for 3D scenes and support language-
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based scene editing. However, these methods are limited
by the continuous implicit 3D representations, there re-
mains potential for further exploration in optimizing both
generation speeds and the quality of the resulting seman-
tic features. More recently, the emergence of 3D Gaussian
Splatting [16] has brought 3D reconstruction into a new
era. 3D Gaussian Splatting represents scenes with collec-
tions of 3D Gaussians and utilizes the tile-based splatting
solution, which allows competitive training time and high-
quality real-time rendering for large-resolution datasets.

Subsequently, works on 3D Gaussians-based scene un-
derstanding and semantic feature generation emerged. Most
of these [14, 29, 32, 38, 42, 43, 45] introduce an extra se-
mantic feature into the 3D Gaussians and then do splatting
and rasterizing just the same as the color rendering pro-
cedure to obtain the attached semantic feature in a given
pose. However, due to the differential raster rendering used
in 3DGS, they utilize shared memory in cuda to update the
parameters. When introducing a high dimensional seman-
tic feature into 3D Gaussian, such as the 512-dimensional
CLIP feature, it will significantly increase the memory and
time cost for the total training procedure. Existing meth-
ods [29, 32] utilize some additional pertained decoders and
reduce the introduced feature dimension to avoid this mem-
ory limitation. Although this can maintain a faster train-
ing and rendering speed for language field generation, it
often requires a complex and time-consuming pre-training
process for each scene. For an individual scene, it needs
more time than building the semantic feature field to com-
press the feature space. At the same time, this additional
encoder-decoder [29] or quantified vocabulary learning for
language features [32] often introduces noise into the se-
mantic field and hinders the object understanding and tar-
geting tasks with high accuracy.

Building upon the properties of 3DGS, we introduce a
novel method, Flexible Disentangled 3DGS (FD-3DGS),
for scene understanding and manipulation. Instead of rely-
ing on cumbersome pre-training, FD-3DGS employs a di-
rect, plug-and-play semantic feature field designed specifi-
cally for 3D Gaussians. Our approach stems from the sim-
ple intuition that points in close proximity should share sim-
ilar semantic properties. We leverage pre-constructed 3D
Gaussians and a plugged multi-resolution hash encoding
to learn semantic features, then utilize an improved point-
based rendering technique to generate a smoother feature
map. To guide this learning process, we employ the pre-
trained CLIP model [30] and a Segment Anything Model
(SAM) [20] to obtain pixel-aligned features. This allows
us to extract object-specific CLIP features and unproject
them into image-aligned space for training. Recognizing
that high-dimensional CLIP features can introduce noise,
we generate lower-dimensional semantic features with more
aggregation and then use a 1 × 1 convolution layer to align

them to the 512-dimensional CLIP space. Furthermore, we
introduce progressive contrastive learning to enhance fea-
ture quality, resulting in clearer object boundaries and more
concentrated features within object types. This facilitates
object understanding and manipulation tasks. With FD-
3DGS, object extraction becomes a simple query based on
semantic feature attributes, allowing direct access to the un-
derlying 3D Gaussian representation for subsequent opera-
tions. This streamlined and efficient approach significantly
improves scene understanding and manipulation capabili-
ties.

In summary, the core contributions of our work are:

• We simplify the process of semantic feature generation
and directly use the 3D Gaussians to learn the correspond-
ing feature for each point, eliminating the need for cum-
bersome pre-processing, post-processing, and additional
training processes.

• We generate the high-quality semantic features distilled
from current pretrained language models, such as CLIP,
with a competitive speed (around 40 minutes), and mak-
ing the deployment and actual usage of 3DGS-based
scene understanding easier and more friendly. The overall
query speed of our models reached 30-60 seconds.

• Our FD-3DGS achieves semantic understanding and ob-
ject extraction that can be directly performed on the 3D
Gaussian points for the first time. The proposed plug-
and-play semantic feature field can be inserted into any
3DGS models.

2. Related Work
2.1. 3D Scene Understanding

3D scene understanding intends to distill the language
information into 3D scenes. Previous work introduced a
feature field branch into the Neural Radiance Field [25]
and rendered features together with images. DFF [21],
N3F [35], and F3RM [31] extended the generation of fea-
ture fields to the unlabeled dataset. They distilled LSeg [22]
and DINO features [5] from the multiview images to the
feature field and therefore they can perform simple feature-
based queries and understanding on the field. 3D-OVS [23]
and LERF [17] later distilled the more powerful CLIP fea-
tures into NeRF to achieve open-vocabulary scene under-
standing. While LERF considered the multiple physical
scales of objects could achieve a fine result. With the emer-
gence of 3D Gaussian Splatting, subsequent work [14, 29,
32, 38, 42, 43, 45] attempts to utilize this powerful, efficient
model for 3D scene understanding. They inherited previ-
ous operations on NeRF and added semantic features cor-
responding to the color attribute in 3D Gaussians. When
introducing high-dimensional features into the attributes of
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Figure 2. Overview of our FD-3DGS. Our model starts from an off-the-shell 3DGS and we fix all attributes in 3DGS, only using coordinates
p to learn the semantic information. We utilize the CLIP encoder to extract the object-level semantic information and use SAM to unproject
the features back into the pixel space to supervise the generation of semantic feature grids.

3D Gaussians, it faces the problem that splat-based rasteri-
zation rendering of high-dimensional will cause OOM error
and unacceptable training time. Therefore, these methods
tried first to compress the dimensions of CLIP and DINO
features through additional encoder-decoder or discretized
vector encoding, then they do the rendering to obtain the
feature map. Although the reduced dimension does speed
up the semantic learning process, they are still limited in 2D
space operation, rendering the semantic feature for multi-
views, performing retrieval operations, and stitching differ-
ent views together to get the final result, which is consid-
ered as a pseudo-3D result. Different from these works, we
learn the low dimensional semantic features from the pre-
constructed 3D Gaussian points and optimize the plugged
semantic field. During the optimization process, we uti-
lize a lightweight convolution to map the low-dimensional
features to the standard high-dimensional semantic space
and later invert the query feature back to 3D Gaussians, to
achieve direct 3D manipulation.

2.2. 3D Scene Segmentation and Manipulation

3D scene segmentation aims to estimate the category or
generate the segmented mask of each point in the scene.
Current work [3, 7, 9, 12, 33, 34, 36, 40] usually introduce
segmentation models into 3D scenes. SemanticNeRF [40]
predict the semantic label together with images from the la-
beled dataset. OpenNeRF [9] distilled OpenSeg [13] into
NeRF for 3D segmentation. SA3D [7] and SAGA [6] lever-
age the interactive prompt segmentation of SAM and in-
troduce SAM into NeRF and 3DGS respectively. Gaus-
sianGrouping [37] introduced Identity Encodings into 3D
Gaussians in order to maintain the consistency of segmen-
tation results in different views. GARField [18] token
physic scale into account when segmentation. After seg-
menting the target objects or regions from the 3D scene,
works [8, 10] also tried to manipulate the target regions us-

ing InstructP2P [4, 15], SDS constrains [28], etc. These
methods require the maintenance of additional classifiers to
map the feature into K categories and re-render the seman-
tic feature for retrieval in the mapping space. In essence,
they are operating in the rendered 2D space, which requires
tedious post-processing. Different from these works, we
avoid the extra mapping process, no need for re-rendering
or semantic tracing, and can directly manipulate in the 3D
Gaussian space.

3. Method

We aim to avoid the cumbersome feature-pertaining
methods and propose a simple yet efficient semantic feature
learning model corresponding to 3D Gaussian to facilitate
scene understanding and object manipulation. Therefore,
we introduce a plug-in-play feature space into 3D Gaussians
and propose our flexible disentangled 3DGS. In this section,
we will first review the principles of 3DGS in Sec. 3.1, then
we will detail how we construct our FD-3DGS, including
the image preprocessing in Sec. 3.2, design for the insert
feature learning from the 3D points based on a multireso-
lution hash encoding in Sec. 3.3, and the feature enhance-
ment procedure for contrastive and aggregated learning in
Sec. 3.4. Finally, we show how to unproject the semantic in-
formation into our feature space therefore to query directly
on the 3D Gaussians in Sec. 3.5.

3.1. Preliminary: 3D Gaussian Splatting

3D Gaussian Splatting, first introduced by [16], repre-
sents a static scene using a set of colored 3D Gaussians.
Each Gaussian is defined by the 3D position p = {x, y, z} ∈
R3, a 3D scaling vector s ∈ R3 in standard deviations, the
rotational quaternion r ∈ R4, and opacity α for the tile-
based splitting.

In addition to the attributes {p, α, s, r}, 3DGS also op-
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Figure 3. The learning process of the inverse convolution and 3D
Gaussians extraction process. When querying, the input embed-
ding is first mapped to the compressed CLIP space, then calculate
the similarity with features in 3D Gaussians.

timizes spherical harmonics (SH) coefficients representing
color c ∈ Rk (where k indicates the degrees of freedom)
of each Gaussians to capture the view-dependent appear-
ance of the scene. It usually uses three degrees of SH co-
efficients to represent color c ∈ R3. For each pixel in the
views of a scene, it follows the tile-based rendering that al-
lows α−blending of anisotropic splats respecting visibility
orders to calculate the color and the formulation is as fol-
lows:

C =
∑
i∈N

ciαi

i−1∏
j=1

( 1− αj) (1)

where ci and αi denote the color and density of a given
point respectively and the value is determined by the opti-
mizable per-point attributes of each Gaussian.

3.2. Image Preprocessing for semantic feature
preparation

Before we introduce the design of our FD-3DGS, we
must describe how we prepare the input images to distill the
semantic information from the CLIP feature extractor [30].
Current works such as LERF [17] and GARField [18] take
the ambiguity of 3D points into account, which means
the same point could have different meanings at different
scales, and introduce physical scale into semantic genera-
tion as a condition. They extract CLIP and DINO [5] em-
beddings from multiple views over multiple scales and then
render the semantic features together with images. In any
case, what we believe essentially and efficiently for open-
world scene understanding is the representative and useful
local features so it can better represent instance-level ob-
jects. Therefore, we are dedicated to improving the quality
of rendered semantic features.

Since CLIP is inherently a global image embedding and
not conducive to pixel-aligned feature extraction, we pro-
pose to unproject the CLIP feature backing to the image-

aligned feature space. For the multi-view input images
{I1, ..., IN}, we first leverage SAM [20] to automatically
obtain the total number of Nobj masked objects in the given
view Ii and the segmentation map Si ∈ RH×W (where H
and W indices the image size) according to the Nobj . Then
we calculate CLIP feature {fo ∈ R512|o = 0, ..., Nobj} for
each object, and finally we could unproject the object-level
CLIP features Fi ∈ RH×W×512 back to the image-size, that
is the pixel-align, according to the segmentation map Si for
each image.

It is worth noting that the CLIP feature extracted here
for open-world understanding is actually very rough since
the pre-trained 512-dimensional CLIP feature contains a lot
of noise and redundancy information, which will hinder the
quality of generated features and thus the accuracy of object
queries and understanding. Therefore, in the following sec-
tions, we will introduce in detail how we reduce the inter-
ference of noise and make the boundaries between different
objects of semantic features clearer.

3.3. FD-3DGS

The goal of our method is to distill the preprocessed
feature into 3D Gaussians, simplify the process of seman-
tic feature generation, improve the quality, and facilitate
scene understanding, therefore we introduce a simple yet
efficient feature-embedded 3D Gaussians. Different from
previous work, we did not directly add a feature attribute
to the 3D Gaussian point, but we utilized the priors of pre-
constructed 3D Gaussians, that points at similar locations
should have similar semantic properties, to insert a plug-
and-play voxel-based semantic feature grid into 3D Gaus-
sians. The overview of our model can be seen in Fig. 2.

Given a 3D Gaussian, we use a Multiresolution Hash
Encoding proposed in InstantNGP [26] to generate the se-
mantic feature f ′ from the coordinate p of Gaussian points.
Compared with the direct learning features method, which
will cause the OOM issue and the obvious increased train-
ing time, our method could make the feature more aggre-
gated, and the time for semantic feature f ′ query in hash
table is only O(1). The process is as follows:

f ′ = MHE(p) (2)

In MHE, we first perform trilinear interpolation in the
voxel grids of semantic feature according to the input po-
sition p to obtain the nearest voxels. For each voxel, it
is mapped to a feature vector of D-dimension in the hash
table. Then we concatenate the queried vectors together,
and obtain our final feature f ′ ∈ Rde through a one-layer
MLP. Each level’s hash table contains E vectors of dimen-
sion D, and the resolution of each level is calculated by
Nl = ⌊Nmin · bl⌋ where Nmin is the coarsest resolution,
b is the growth factor and l notes the level. Details of the
MHE setting can be found in Sec. 4.
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To generate the pixel-align 2D feature map, we follow
the point-based α−blending same as the color calculation
in Eq. 1 using the queried feature f ′ and the formulation is
as follows:

F ′ =
∑
i∈N

f ′
iαi

i−1∏
j=1

( 1− αj) (3)

where f ′
i here is what we calculate according to the

MHE. Note that the CLIP features we used actually have
512 dimensions. To avoid the OOM errors during raster-
ization, we modified the backpropagation process of cuda
rasterization, that is, returning the gradient of the feature
through a manually allocated buffer instead of the shared
memory. This allocated buffer will also slow down the
rasterization. However, considering that high-dimensional
features contain too much noise in the scene understand-
ing task as we discussed before, finally, we set the feature
f in MHE to 256-dimension and get the semantic feature
F ′ ∈ RH×W×256. Then we introduce the 1×1 convolution
to align the rendered F ′ ∈ RH×W×256→512 to the GT CLIP
feature F .

3.4. Feature Enhancement Procedure

As we mentioned before, the key to high-accuracy scene
understanding is a high-quality semantic feature. For the
features generated according to Eq. 3, the boundaries of ob-
jects are not clear, and it hinders object extraction and ma-
nipulation. In this section, we present our training process
and how to improve the quality of semantic features, espe-
cially a clear object boundary.

As is shown in Fig. 2, our model is based on a set of
learned 3D Gaussians following the same setting as the
original paper [16] and then we introduce the feature field
into 3D Gaussians. We fix all attributes of the constructed
3D Gaussians, but give the position p = (x, y, z) with gra-
dient to learn the feature voxel-grid and the 1 × 1 convolu-
tion layer as we mentioned in Sec. 3.3. To optimize the total
network, we designed the feature reconstruction loss (simi-
lar to the reconstruction of color in the original 3DGS):

Lrec =
∑

i∈Nimg

||F ′
i − Fi||22 (4)

We also calculate the cosine similarity of the generated
feature and the GT feature inspired by OpenScene [27] to
ensure the network output F ′ more consistent with the GT
feature:

Lcos = 1− cos(F ′, F ) (5)

Remember what we mentioned in Sec. 3.2, different ob-
jects in the generated features are prone to blurred bound-
aries. Similar to the contrastive supervision proposed in
GARField [18], our goal is also to make the features of the

same object closer and the features of different objects far-
ther apart. Also inspired by PanopticLifting [33] and Con-
trastiveLift [2], we intend to enhance the contrastive of gen-
erated features through the following loss function. Unlike
the NeRF-based method, our FD-3DGS cannot render rays
and features by batches and calculate the feature contrast
within a batch of rays in the rendering process, we there-
fore designed additional scaling processing for the rendered
features. Specifically, to avoid the OOM problem when
loss calculation, we first compress the generated feature
F ′
low ∈ RH×W×256 with Max Pooling, and then we ran-

domly pick a patch on the compressed feature, and perform
the following contrastive loss calculation on this patch:

Lcontr = − 1

Np
log

1FA=FB
· sim(F ′

A′ , F ′
B′ ; γ)

sim(F ′
A′ , F ′

B′ ; γ)
(6)

where Np denotes the selected patch size, 1 is the in-
dicator function to select features of the same category
from F to supervise the generated F ′, and sim(A,B; γ) =
exp(−γ||A−B||2) is the Gaussian RBF kernel used to com-
pute the similarity of generated feature F ′.

Through this additional scaling processing, compared
with the direct patch-picking method, we enlarge the win-
dow of contrastive calculation and avoid the poor results led
by the localized areas. Also, Lcontr makes the feature clus-
ters with sharp boundaries.

In addition, we also introduce total variation loss Ltv as
a regularization term to encourage spatial smoothness for
the generated semantic features F ′ while preserving the se-
mantic boundaries.

Ltv =
1

H ∗W ∗ C
||∇u(F

′) +∇v(F
′)|| (7)

where u and v denote horizontal and vertical directions re-
spectively.

Overall, the total training loss is defined as:

L = λrecLrec + λcosLcos + λcontrLcontr + λtvLtv (8)

We utilize a progressive training strategy for semantic
features, beginning with reconstruction and gradually incor-
porating contrastive constraints to prevent scattered results.

3.5. Query-based Decomposition and 3D Gaussians
Manipulation

Since only the CLIP feature is used to learn the feature
field, a trained FD-3DGS can be used to perform 3D zero-
shot segmentation by image or text queries. When query-
ing, existing methods can only calculate the relevancy score
in the generated feature map and return the target object
masks, which we think they didn’t really query on 3D space.
Different from them, we propose to not only obtain the se-
lected object mask according to the rendered features but
also support to query directly on the 3D Gaussian points.
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Figure 4. Results of our FD-3DGS on LERF [17], MipNeRF360 [1], and 3DOVS [23] datasets. We show the PCA visualization of our
semantic features, queried results on the 2D rendered semantic features, and the results directly on 3D Gaussian points. Our model can not
only query on the rendered semantic features but also directly manipulate and extract the 3D Gaussian points corresponding to the object.

As is shown in Fig. 3, when querying, we first get the
CLIP feature q ∈ R512 of the input prompt, image or lan-
guage, then we could easily get the relevancy score of each
pixel in the feature map by computing the cosine similar-
ity score = F ′·q

||F ′·q|| between the rendered features and the

query vector. We then filter out the target object by a user-
specified threshold.

However, this is still performed on the rendered image
plane. Due to the characteristics of the explicit structure
of 3D Gaussian Splatting, we want to directly get the 3D
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Figure 5. Comparison Results with the latest methods LEGaussians and GaussiansGrouping. We use the same text prompt as in Fig. 4 and
query on the rendered images. It is clear that our semantic fields inserted on 3D Gaussians can extract more complete objects, even those
parts that are occluded from the rendering view can be extracted together in 3D space.

Gaussian points, which can later be used for subsequent ap-
plications. Different from the semantic tracing proposed in
GaussianEditor [10], what we need is just to unproject the
dense feature F ′

low back to the original CLIP feature space.
Inspired by Glow [19], we also want to learn the inverse of
1 × 1 convolution for the feature transformation after ras-
terization. In this way, we can map the features associated
with the position of 3D Gaussian points before rasterization
into the original CLIP feature space. We add an optional
pseudo inverse 1× 1 convolution layer during training as is

shown in Fig. 3. During training, we can learn this inverse
convolution using Cycle Loss [44]:

Lcyc = ||conv−1(F ′)−F ′
low||1+||conv(F ′

low)−F ′||1 (9)

To speed up the invert layer learning, we usually fix the
conv layer and update conv−1 separately. Then we unpro-
ject the query vector q ∈ R1×512 to the compressed feature
space qlow to directly perform the query on 3D Gaussian
points using the cosine similarity same as what we do on
the rendered features.
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Figure 6. Ablation Results: We drop contrastive learning and TV
regularization mentioned in Sec. 3.4 for comparison. The top row
shows the PCA visualization of semantic features and the bottom
shows the results directly on 3D Gaussians using “cookies on a
plate”, “coffee mug”, and “Teddy Bear” in teatime scene.

4. Implementation Details
In image preprocessing (Sec. 3.2), we utilize SAM with

ViT-H settings to extract objects from the multi-view im-
ages, followed by CLIP to obtain the image-aligned em-
beddings. Notably, CLIP here can be replaced with im-
proved models like MaskCLIP [41], which we use with a
FeatUp [11] layer under ViT-B settings for sharper bound-
aries. Our FD-3DGS could directly insert the semantic fea-
ture field into any pre-constructed 3DGS. In this paper, we
utilize pretrained original 3D Gaussian Splatting in default
settings for 30,000 iterations. For our FD-3DGS, we fix
all 3DGS attributes and only train the feature field and the
convolution layer for 1500 iterations. The feature field em-
ploys multiresolution hash encoding with 16 levels (resolu-
tions from 16 to 128), a hash table size of 220 and 8 feature
dimensions per entry. After encoding, a FullyFused MLP
with a 128-dimensional hidden layer and ReLU.

We introduce contrastive loss by first applying MaxPool-
ing to the generated features, then randomly selecting fea-
tures with 32 patch sizes. When calculating the similarity
of generated feature F ′ in Euclidean space, we set the co-
efficient γ = 1.0 for the RBF kernel. Contrastive loss is
introduced progressively, starting at 800 iterations. To bal-
ance the weight of CLIP feature, we set λrec to 1000 and
the rest to 1. Experiments are conducted on an NVIDIA
A100 GPU (40GB RAM). The training takes 45 minutes
on a dataset of 180 images at 986 × 728 resolution, faster
than previous methods.

5. Experiments
5.1. Setups

Dataset: We select several scenes from Mip-NeRF360
dataset [1] (“room”, “counter”), LERF [17] (“teatime”,
“figurines”, “ramen”, “waldo kitchen”) and 3D-OVS [23]

Test Scene LEGaussian [32] GaussianGrouping [37] Ours
mIoU(%) mBIoU(%) mIoU(%) mBIoU(%) mIoU(%) mBIoU(%)

figurines 51.2 44.6 56.5 52.9 91.8 83.4
teatime 43.3 42.8 66.1 63.2 80.1 76.3
counter 59.4 41.3 58.7 52.9 82.1 65.9
room 21.2 16.3 73.7 71.1 70.5 69.0
table 59.2 31.2 79.7 69.6 95.1 87.5

Table 1. Comparison of open vocabulary segmentation on
LERF [17], MipNeRF360 [1], and 3D-OVS [23] dataset. We use
the segmentation results of GroundingDINO [24] as GT to calcu-
late mIoU and mBIoU. Our model performs better in most cases.

(“sofa”, “table”). Each scene contains 180 to 320 images
captured in a wide range of views in MipNeRF360 and
LERF, and about 30 images in 3D-OVS.

Result: We compared our model directly with LEGaus-
sians [32] and GaussianGrouping [37] for object extrac-
tion and scene segmentation. To obtain quantitative results,
we use the segmentation results of GroundingDINO in test
views as GT and calculate the mIoU, mBIoU in Table 1.
The results in Fig. 5, Fig. 4 and Table 1 demonstrate the per-
formance of our method. In most cases, our model performs
better in both quality and quantity. In room scene, both the
results of GroundingDINO and other models cannot iden-
tify the occluded bottles (blue part in room in Fig. 5), but
ours can extract the occluded part. Therefore, the quantita-
tive result in this scenario is slightly lower, but we think our
result is more reasonable. Fig. 4 shows that our method can
direct query and manipulate on the 3D Gaussians.

5.2. Ablation Study

To demonstrate the effectiveness of our feature enhance-
ment procedure in Sec. 3.4, we mainly conduct the abla-
tion study on our contrastive learning and the total variation
regularization. We set up two experiments, no contrastive
learning, and no contrastive learning + TV regularization in
Fig. 6. It can be clearly seen that the boundary of objects
without contrastive learning and TV regularization is fuzzy,
and extracted 3D Gaussians even have missing parts. For
queries on small objects, such as “spoon handle” and “cof-
fee mug”, it is obvious that the complete model is more sen-
sitive and can separate the “spoon handle” from the “cof-
fee mug”, which demonstrate the effectiveness of the men-
tioned procedure and regularization term.

6. Conclusion
We present FD-3DGS, a flexible disentangled 3DGS for

scene understanding and object manipulation. We propose
a simplified semantic field that can be inserted into any
3DGS. The most important is that for the first time, we al-
low the semantic-based 3D editing to be performed directly
on the explicit 3D Gaussians, unlocking a new level of con-
trol and precision for interacting with 3D Gaussians, bring-
ing more possibilities to subsequent applications.
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man Müller, Matthias Nießner, Angela Dai, and Peter
Kontschieder. Panoptic lifting for 3d scene understanding
with neural fields. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 9043–9052, June 2023. 3, 5

[34] Ayça Takmaz, Elisabetta Fedele, Robert W. Sumner, Marc
Pollefeys, Federico Tombari, and Francis Engelmann.
OpenMask3D: Open-Vocabulary 3D Instance Segmentation.
In Advances in Neural Information Processing Systems
(NeurIPS), 2023. 3

[35] Vadim Tschernezki, Iro Laina, Diane Larlus, and Andrea
Vedaldi. Neural Feature Fusion Fields: 3D distillation of
self-supervised 2D image representations. In Proceedings of
the International Conference on 3D Vision (3DV), 2022. 1, 2

[36] Suhani Vora, Noha Radwan, Klaus Greff, Henning Meyer,
Kyle Genova, Mehdi S. M. Sajjadi, Etienne Pot, Andrea
Tagliasacchi, and Daniel Duckworth. Nesf: Neural semantic
fields for generalizable semantic segmentation of 3d scenes,
2021. 3

[37] Mingqiao Ye, Martin Danelljan, Fisher Yu, and Lei Ke.
Gaussian grouping: Segment and edit anything in 3d scenes.
arXiv preprint arXiv:2312.00732, 2023. 3, 8

[38] Daiwei Zhang, Gengyan Li, Jiajie Li, Mickaël Bressieux,
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